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Asymptotics of Decay of Correlations in 
the ANNNI Model at High Temperatures 
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The asymptotics of decay of correlations of spins in the ANNNI model on an 
(v + 1 )-dimensional lattice for high temperatures is shown to consist of exponen- 
tionally decaying oscillations. The problem of describing the asymptotics is 
reduced to the spectral analysis of one-particle states of a corresponding infinite- 
particle Hamiltonian. 

KEY WORDS:  

1. We consider the A N N N I  model  (1'2) on the lattice Z Vx Z 1, which 
is defined by the Hamil tonian:  

t ~ Z  1 x , x "  ~ , l x - x ' j = l  

+ J 1  E E r t ' + J 2  E E ax,,ax, c (1) 
t , t ' ~ Z  1 x ~ 2 ~  v t , t ' ~ 2 e  I x ~ Z  v 

[ t - - t ' ]=  1 [ t - - t ' l = 2  

where ax, t =  -+-1, (x, t )E7/v+l ,  J12>0, and f f2<0.  We denote by 
= {r t, (x, t )~  2~ v+ 1} the Gibbs field defined by the Hamil tonian  (1) (for 

small/~ = 1/T).  Let o- n = {o-x,n} be the values of configurat ion of  the field on 
the layer Yn = {(x, n)}. 

In this paper  we investigate the asymptot ic  behavior of the correla- 
tions 

(F ,  F(n)),  n --+ ~ (2) 
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where F =  F(ao)= ao, o + Fo(ao), Fo(ao) is a "small" local functional on the 
values of the field on the zero layer Yo, and F (') is the same functional 
on the values of the field configuration on the nth layer Yn (i.e., 
F( ' ) (a . )=F(~ .an) ,  where z .  is a shift of the configuration ax,, in the 
"time" direction on - n ) ,  and prove for n ~ ~ the following asymptotic 
formula: 

r n , 

<F, F(")> = ( - 1 )n + l ~ sln(n~0)[c + o(1 )3 
n ' ~  

where ro>0 ,  ro~fl, Cpo~x/fl, and c is a constant. In particular, the 
asymptotics of decay of the correlations of spin <ao,o, ao,, > is of that kind. 

To find the asymptotics of correlations (2), we use the scheme of 
refs. 3-5. According to refs. 4 and 5, we can rectify some low-degree 
(relative to the order of the parameter fi) subspaces of the random field 
transfer matrix (since the field in the ANNNI model is a two-step Markov 
process, the constructions from of refs. 3-5 are slightly modified). Further, 
the spectrum of the transfer matrix in each of those subspaces is equivalent 
to the spectra of one-, two-, three- particle, etc., operators similar to the 
lattice Schr6dinger operator. As a rule for the asymptotics (2) it is enough 
to know the one-particle spectrum. In the more general case (for example, 
for even functionals F on spin), one should use the structure of the 
spectrum of the transfer matrix in two-particle subspace, as was done in 
ref. 3. Note that the complete description of the two-particle spectrum was 
presented in ref. 6. 

2. If we join neighbor layers Yn of the lattice 77 v+l in one layer 
Y, = Y2, vo Y2~ +1, we can construct, equivalent to the field a, the Markov 
field ~/on the enlarged lattice U n Y, = 7/v + ~" 

,7= {,ix,,, (x, t) z 

The spin value space S of this field consists of the ordered pairs {t/u), ~(2)}, 
t/C1), t/(2)= _+1, and the Hamiltonian (1) takes the form 

H =  Y, y, /~(1),a(l) (2) (2) ~,t~,,,ix,,, + q~,,rl~',,) 
t ~ Z  l x , x ' ~ Z ~ , l x - x ' l = l  

AvJ1 E E (1) (2 ) . (1 ) . (2 )  (~lx,,~lx,, + 1) "l x ,  t ' f  x ,  t - -  
i ~ _  1 X E ~  v 

+'12 E E 1" (1)~(1) .(2).(2) 
[ ~ x , t ~ x , t  1 + 1) (3) 

l ~  1 x ~  
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This Hamiltonian is not invariant to "inversion of time": 
(x, t) ~ (x, - t), and therefore the transfer matrix o~ of the field 

~ F = P ~ ,h ~ll l F, F e ~p  h 

is not a self-adjoint operator in ~ph" The operator Y *  adjoint to ~- acts 
according to 

J~*F=P~ph~#_IF ,  F ~ p h  

Here Hph=L~~ is the Hilbert space of the functionals, 
dependent on values of the field r/ on the zero layer Yo; P~ph is the 
orthogonal projection in L2(S~'% #) on ~ h ;  ~#+1 are shift operators in 
L2(S z~'+l, # )  in the time direction (forward and backward); # is the limit 
Gibbs measure on the space S Z~+~, generated by the Hamiltonian (3). 

Using the methods developed in refs. 4 and 5, it is possible to prove 
the following theorem. 

T h e o r e m .  For fl small, 0 < fl < flo there exist two decompositions of 
~ph in a direct (nonorthogonal, in general) sum of subspaces, invariant 
to operators ~ and o ~* ,  respectively, and a group of space shifts 

In this case 

= ( w t )  • y~g' = (~)~- (5) 

and the norms of the operators ~ and i f *  on the subspaces ~ and W*, 
respectively, are of order f12, i.e., 

IIg 1.2[I ~32, IIg* I.~1t ~32 (6) 

There exist two biorthogonal bases {h~J),x e 2_v, j =  1,2} and 
{/~(]), x e T/v, j =  1, 2} in the subspaces . ~  and Yf*, respectively, such that 
(h7 ~, ~ ) . ~  = ax,~,Ck, 

and 

Offsh(J) =. h ( J )  off ~ (J )  - -  h (J )  
_v "" x + s~ ~ s " _ , r  - -  "~ x + s ,  

x, se2_ v, j = l , 2  

l ~ ( J )  - -  E j , k  ( k )  ax x, hx, 
k =  1, 2 ; x ' ~  ~- ~ 

; ' "  x z... ~--- - - x  x ' - - x  

k = 1, 2 ; x '  E Z v 

(7) 



960 Minlos and Zhizhina 

Here -,~ = A*, Ax = I[a2kl[, and J~  = II~x'kll are second-order matrices, and 
A~ has the decomposition 

J 2  ~ k J 1 J 2  2 J 1  ] "[- O ( f 1 3 )  

Ax=f l2(Jo  2 j J : ) + O ( f l  3) for , x ] = l  

[a~'kl ~ cfl Ixl+~ for Ixl/> 2, c is a constant 

(8) 

Remark. Both of the biorthogonal bases {h~ ), x~7/~, j =  1, 2} and 
{'~(f, x ~ Z ~ , j =  1, 2} on subspaces ~ut] and ~ *  are constructed as pertur- 
bations of a system of functions Y-<J) 2}, and we tqx, o, x E Z ~, j = 1, have 

h(J) - -  .(,/) - -  g ,+(J) 
" ty ,  O 2 " 1 U ' l x ,  O 

y < x  

t~ (J) - -  ,a (+) - - R  Z " ( J )  - -  1 J 1 R " < 3 - ; ) 4 -  ~(J)  I~'l x, O x - -  "lx,  O I-" ' l y ,  O o x  
y < x  

where g(x J~, ~ ) ,  j = 1, 2, are functions of order of fiE, X, y ~ 7/~, y < X in 
lexicographic order. 

3. Let F e  ~ph be a functional such that 

F =  ~ L"(J)H(J) ,'x ",~,o + ~ '  k / l i  (9) 
( x , j )  E B ~  YO I =  YO 

where B and I are some finite subsets of the layer Y0, Z '  means a sum over 
a finite number of subsets I c  Yo, ~/t = 1-[(x,j)~ "<J) and k~J)# 0 and ki # 0 'l x, O~ 

are real constants. 

Lemma. For  a functional F e  gfOh of the form (9) in the decomposi- 
tion F =  F 1 + F2 = F*  + F*,  where 

F, ~ (J) (j) d(J>h (j) = c x h x ,  F * =  Z - x  -~ 
x ~  Zv, j =  1,2 x~  Zr, j = 1,2 

the coefficients c~ ) and d(~ j) are real and have the upper bounds 

(J) (J) lCx I<c121xJ, ldx [ <c2 21xl 

for some 0 < 2 < 1, and 

Z (j) [c x ] > M ,  ~ Id~)l > M  
x ~  2~v,j= 1,2 x~  Zv, j ~  1,2 
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where M is a constant depending on constants t.vxgk(J), x e B, j = 1, 2 }, and Cl 
and c2 are constants depending on B. Moreover, for the norms of F2 e ovf 2 
and F *  ~ ~ *  the following hold: 

liE211 < c  [Ifll, IIf*ll < c  [Ifll 

with some absolute constant c. 
Now using (4)-(6), we have 

(F, f (~)) = (~-'F, F) 

= (o~(F, +F2), F~ +F*) 

= (Y'F1,  F*) + (Y'F2,  F*) = (~'[F,,  F*) + O(fl 2") (10) 

where ~ = f f  ]~el. 
Hence the main term of the asymptotics of the correlations (2) is 

determined by the expression ( f f~F , ,  F*).  The lemma and the properties 
of biorthogonal bases imply 

(~-7F1, F , )  = ~ Cx (j) dx ,(k) bx_x ,(.),jk (11) 
x , x '  ~ Zv;j,  k =  1, 2 

where Bx_x , -  (") - -x-x'h(')'Jk is the n-repeated convolution of the matrix Ax_ x, 
Performing a Fourier transform for the variable x, 

h(x j )  ~ e i (2 ,x) ,  h(x j )  ~ ei(2,x) 

E (j)  (J) cx h x ~ ~ c x(j)ei(;''~)=fj(A)eL2(T~) 
x ~ Z  v x ~ Z  v 

Z d(~J)f~(~ j ) ~  Z d(fei(Zx)=fJ(2)eL2(rv) 
x E Z  v x~]7 v 

for every j = 1, 2, we obtain the following expression for the bilinear form 
(11): 

fr~ (B'(2)f(2),  f(2)) d2 

= E f '~ Bj, k(A) fj()0 fk(2) d2 (12) 
j , k =  1,2 TV 

where the matrix B(2) is a Fourier transform of the series of matrices 
{Ax, xe~}, B'(;O (') = {B),k(2)}, and B(2) satisfies the decomposition 

B(2)=Ao+ 2AIxI=I ~ cos2(J) +O(fl 3) 
j = l  

where A o and AI~ I = 1 are determined in (8). 
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Remark. It can be seen from (7) that the spectrum of the operator 
coincides with the spectrum of the operator (Bf)(2) = B(2) f(2),  which acts 
in the space L2(T v, C 2) of vector-valued functions on a v-dimensional 
torus. 

The decomposition of the vector f (2 )  by eigenfunctions of the operator 
B(2) is 

f (2 )  = h,(2) e,(2) + h2(z ) e2(). ) (13) 

Since the eigenvalues of the matrix B(2) ,  

col,2(2) = J2fl +- i J1 I J211/2/~3/2 + g J l f l '  2 2 

+ 2J2fl 2 i COS 2 (j) -1- O(fl 5/2) (14) 
j=l  

are different for every 2 E T~: co~(2) # co2(2), 2 e T ~, the functions hi(2) and 
h2(2) from (13) are smooth. Using an analogous decomposition o f f (2 )  by 
eigenfunctions of the operator B*(2) from (12) and (13) we have 

fv (B'(2) f(2),  f (2) )  d2 

= fr~ (~o~(2) h~(2) e~(2) 

+ 0)~().) h2(~. ) e2(/].), g1(2) ~1(2) + g2(2) ~2(2)) 6/2 

T v T v 

The functions co1,2(2 ) are even; thus, there exists only the critical point 
2 0 = 0  on T v for both functions co~(2) and a)z(2) such that the absolute 
values of the functions in it have their absolute maximum: 
Ico~(,ko)l = 1r = re, and arg •1(2o) = - a r g  r = ~0 o, and also 

~ 1 ( ~ 0 )  = ff/2(~O) ( 1 6 )  

From (10)-(12) and (14)-(16), using the method of stationary phase for 
every integral in (15), we have 

(o~nF, F) = ~ cos(nq0o + c0[c + o(1)] 
n " -  

1 rn  
= ( - 1 )  "+ ~~ 
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Here 

ro = IJ21 fl + 2v [J21 f12 + 0(fl5/2) 

Jl  fll/2 
~Oo = rc I J211/2 -4- O(fl)  

c~ = a r g  0 1 ( 2 o )  + a r g [ (  - -  (In o91(2))" 1~ ~ = i.0) 1/2] 

77 
- -  Jr O ( f l  1/:) 

2 

(o ~ =pfll/2 + O(fl) 

w h e r e  p a n d  c a r e  c o n s t a n t s .  
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